China OEM Casting and Machining Belt Pulley for Italy Customer crankshaft pulley

Product Description

Casting and Machining Belt Pulley for Italy customer

1. Material: Cast iron GG25, Ductile iron,grey iron
2. Process: machining – phosphating
3. Size:1C230,1C250,1C170,1B250,1B230

Specifications

 

Various Types of Pulley GG20/GG25/GG30/V-Belt Pluuey 
1.Produce as drawings 
2.on time delivery 
3.ISO,CCC Reliable qualit 
 

 

Various Types of  Pulley GG20/GG25/GG30/V-Belt pulley

Specifications:

Process: casting-machining-palstics spraying-packaging

Technical: sand casting

Material: China-HT200/HT250/HT300  Germery-GG20/GG25/GG30

Dimension: as customer’s request

Casting level: CT10-CT11

Surface roughness: Ra25

Packaging: wooden cases or as customer’s drawings

Surface treatment: shot blasting, plastic spraying, paint spraying

Equipment: cupola, electric furnace

Weight: 0.5kg-100kg

Surface colour: plastic spraying RAL2004/black paint/ antirust paint

Inspection:

  In-house and third partyUniversal

All the products are strictly inspected by the operators and skilled QC

  inspection tools: hardness tester, height ruler

 Production Procedure:

 

Drawings→Mould developing→Raw casting→Sandblasting→Rough machining or finish machining→Surface treatment→Inspection→Packing→Delivery strictly

 

We can produce the pulleys according to the drawings and samples provided by the customers with excellent quality and competitive price.

As an experienced casting manufacturer, we assure you the quality! Our products are through careful inspection, and our quality is high and reliable which have been achieved cutomers’ satisfaction!

If you are interested in our products, please do not hesitate to contact us!

HangZhou Jiangdashengye Trade co.,ltd.

OEM SERVICES

Service

Drawings or samples processing/OEM/ODM service provided

Produce Process

Drawings→ mould making →raw casting → sandblasting →rough machining or finish machining →surface treatment →product checking→ packing →delivering

Casting Material

Cast Iron, Grey Iron, Ductile Iron,Carbon Steel, Stainless steel, Alloy steel, 
Aluminum, Aluminum alloy etc.

Standard

ISO, GB, ASTM, DIN, JIS

Equipment

melting furnace, centrifugal casting machines coated CHINAMFG machine CNC machines turning machines grinding machines milling machines drilling machine punching machines laser carving machine

Surface treatment

Heat treatment, Polishing, Sand blasting, Painting, Electro-plating, Chemical Plating,

 and other machining processing.

Inspection

Equipments

Spectrum analysis instrument, Metallurgical analysis, Tensile strength tester, Hardness tester, Roughness tester, deflection tester, Impact test machine, Projector, Altimeter, Scale Micrometer, pressure tester, etc.

Delivery

Sample sent to customer by air.

Large quantity products delivered to customer by sea from xingang,China

Payment terms

L/C at sight or 30% T/T as deposit and balanced 70% to pay before

v pulley, v belt pulley, v groove pulley, v groove belt pulley, taper lock pulley, taper lock v belt pulley, taper lock bushing pulley, taper lock pulleys / taper bore pulley, large v belt pulley, double v belt pulley, cast iron v belt pulley belt pulley, variable speed v belt pulleys, v belt pulley split pulley, cast iron v belt pulley

V belt pulley specifications:

1) European standard:    

a) V-belt pulleys for taper bushings: SPZ, SPA, SPB, SPC; up to 10 grooves   

b) Adjustable speed V-belt pulleys and variable speed pulleys   

c) Flat belt pulleys and conveyor belt pulleys

2) American standard:   

a) Sheaves for taper bushings: 3V, 5V, 8V    

b) Sheaves for QD bushings: 3V, 5V, 8V   

c) Sheaves for split taper bushings: 3V, 5V, 8V   

d) Sheaves for 3L, 4L or A, and 5L or B belts: AK, AKH, 2AK, 2AKH, BK, BKH,2BK, 2BKH, 3BK   

e) Adjustable sheaves: poly V-pulley, multi-pitch H, L, J, K and M

3) Bore: pilot bore, finished bore, taper bore, bore for QD bushing

4) Surface finish: paint, phosphating, zinc plated

5) Material: cast iron, ductile iron, nylon, aluminum

6) Made according to drawings and/or samples, OEM inquiries welcomed

Now we send photo of our production as follows:
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Size: 1c250
Size2: 1c230
Size3: 1b270
Size4: 1b250
Name: Casting and Machining Belt Pulley
Transport Package: Wooden Packing
Samples:
US$ 3.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

belt pulley

What is the importance of proper pulley alignment and tensioning in belt pulley systems?

Proper pulley alignment and tensioning are of utmost importance in belt pulley systems. They directly impact the efficiency, reliability, and longevity of the system. Here’s a detailed explanation of the importance of proper pulley alignment and tensioning:

1. Power Transmission Efficiency: Proper pulley alignment and tensioning ensure efficient power transmission in belt pulley systems. Misaligned pulleys or incorrect belt tension can lead to slippage, which results in power loss. When the belts slip on the pulleys, the intended power transfer from the driving pulley to the driven pulley is compromised. By aligning the pulleys correctly and maintaining proper tension, the belts grip the pulleys securely, allowing for efficient power transmission and maximizing the system’s overall efficiency.

2. Prevents Belt Wear and Damage: Improper pulley alignment and tensioning can cause excessive belt wear and damage. Misaligned pulleys can cause the belts to run at an angle, resulting in uneven wear on the belt’s edges. This can lead to premature belt failure and the need for frequent belt replacements. Insufficient or excessive belt tension can also cause accelerated wear, as it puts additional strain on the belts. Proper alignment and tensioning help distribute the load evenly across the belts, minimizing wear and extending their lifespan.

3. Reduces Noise and Vibration: Correct pulley alignment and tensioning contribute to reducing noise and vibration in belt pulley systems. Misaligned pulleys can cause the belts to vibrate and generate noise during operation. Excessive belt tension can lead to increased vibration as well. These vibrations and noise not only affect the comfort of operators but can also impact the overall stability and performance of the system. Proper alignment and tensioning help minimize vibration and noise levels, creating a smoother and quieter operation.

4. Improves System Reliability: Proper pulley alignment and tensioning enhance the reliability of belt pulley systems. Misalignment or improper tension can lead to unexpected belt failures, system downtime, and costly repairs. When the belts slip or wear unevenly, it can cause disruptions in power transmission, resulting in reduced system performance or complete failure. Proper alignment and tensioning minimize the risk of belt-related issues, ensuring the system operates reliably and consistently.

5. Enhances Component Life: Correct pulley alignment and tensioning contribute to the longevity of system components. When the belts run smoothly and grip the pulleys properly, it reduces stress on the pulleys, bearings, and other mechanical parts. Misalignment or excessive tension can cause unnecessary strain on these components, leading to premature wear and failure. Proper alignment and tensioning help distribute the load evenly, minimizing stress and extending the life of system components.

6. Facilitates Easy Maintenance: Proper pulley alignment and tensioning make maintenance tasks easier. When pulleys are aligned correctly, it simplifies belt replacement, adjustment, or inspection procedures. Easy access to the belts and pulleys allows for efficient maintenance and reduces downtime during servicing. Additionally, proper tensioning ensures that belts can be adjusted or replaced without difficulty, improving overall serviceability of the system.

7. Optimizes System Performance: Ultimately, proper pulley alignment and tensioning optimize the performance of belt pulley systems. When the belts are aligned correctly and tensioned properly, the power transmission is efficient, wear is minimized, and vibrations are reduced. This results in reliable and consistent system operation, allowing the system to perform at its intended level of efficiency and productivity.

In summary, proper pulley alignment and tensioning are essential for efficient power transmission, prevention of belt wear and damage, reduction of noise and vibration, and improvement of system reliability. They enhance the lifespan of system components, facilitate maintenance tasks, and optimize the overall performance of belt pulley systems. By ensuring correct alignment and tension, operators can maximize the efficiency, reliability, and longevity of their belt pulley systems.

belt pulley

How does the size and design of a belt pulley impact its performance?

The size and design of a belt pulley have a significant impact on its performance in power transmission systems. The size refers to the dimensions of the pulley, such as its diameter and width, while the design encompasses factors like the groove profile, material selection, and overall construction. Here’s a detailed explanation of how the size and design of a belt pulley impact its performance:

1. Speed and Power Transmission: The size of a belt pulley directly affects the speed and power transmission capability of the system. A larger pulley diameter results in higher belt speeds and increased power transmission capacity. On the other hand, a smaller pulley diameter allows for slower speeds and reduced power transmission. The selection of an appropriate pulley size depends on the desired speed and torque requirements of the application.

2. Belt Tension and Grip: The size and design of a belt pulley influence the tension and grip between the belt and pulley. A larger pulley diameter increases the angle of wrap, which improves the belt’s grip on the pulley and enhances power transmission efficiency. Additionally, the width of the pulley affects the contact area with the belt, allowing for higher load-carrying capacity. Proper belt tension and grip are crucial for preventing belt slippage, maximizing power transfer, and ensuring reliable operation.

3. Speed Ratio: The size and design of the driving and driven pulleys determine the speed ratio between them. By selecting pulleys of different sizes or varying the number of grooves, the speed ratio can be adjusted. This is important in applications where specific speed requirements need to be met, such as in machinery that requires different operating speeds for various operations. The design of the pulleys, including the groove profile and pitch diameter, must be considered to achieve the desired speed ratio.

4. Belt Life and Wear: The size and design of a belt pulley can impact the life and wear characteristics of the belt. Improper pulley sizing or design can lead to excessive belt tension, uneven belt loading, or misalignment, resulting in premature wear and failure of the belt. A well-designed pulley with appropriate dimensions, smooth groove profiles, and proper alignment reduces belt stress and wear, prolonging the belt’s lifespan and reducing maintenance requirements.

5. Noise and Vibration: The size and design of a belt pulley can influence the noise and vibration levels in the power transmission system. Proper pulley size selection and design considerations, such as balancing the pulley, ensuring concentricity, and minimizing runout, help reduce vibration and noise generation. This improves overall system performance, operator comfort, and reduces the potential for component fatigue or damage.

6. Material Selection and Construction: The design of a belt pulley includes material selection and construction considerations. Different materials, such as steel, cast iron, aluminum, or composites, offer varying levels of strength, durability, and resistance to factors like corrosion or extreme temperatures. The design may also include features like hubs, keyways, or flanges, which enhance the pulley’s performance and facilitate proper installation and alignment in the system.

Overall, the size and design of a belt pulley play a crucial role in determining its performance in power transmission systems. Factors such as speed and power transmission capability, belt tension and grip, speed ratio, belt life and wear, noise and vibration levels, and material selection all depend on the proper sizing and design of the pulley. Attention to these factors ensures optimal performance, efficiency, and reliability in belt-driven applications.

belt pulley

What are the key components and design features of a belt pulley?

A belt pulley consists of several key components and incorporates specific design features to ensure efficient power transmission and reliable operation. Understanding these components and design features is essential for proper selection and utilization of belt pulleys in mechanical systems. Here’s an overview of the key components and design features:

1. Pulley Body: The pulley body is the main structure of the belt pulley. It is typically a wheel-shaped component made of materials such as cast iron, steel, or aluminum. The pulley body provides the necessary strength and rigidity to support the belt and transmit rotational motion.

2. Grooved Rim: The rim of the pulley body features a series of grooves or channels. These grooves accommodate the belt or rope, ensuring a secure engagement between the pulley and the transmission element. The groove profile can vary depending on the type of belt or rope being used.

3. Hub or Bore: The hub or bore is the central opening in the pulley body. It allows the pulley to be mounted and secured onto the shaft. The hub may have keyways, splines, or other features to ensure proper alignment and torque transfer between the pulley and the shaft.

4. Flanges: Flanges are raised edges or rims located on the sides of the pulley body, adjacent to the grooved rim. Flanges help guide and prevent the belt from slipping off the pulley during operation. They provide additional support and stability to the belt, ensuring reliable power transmission.

5. Tensioning Mechanism: Some belt pulley designs incorporate a tensioning mechanism. This mechanism allows for adjusting the tension in the belt to ensure proper engagement and prevent slippage. Tensioning mechanisms can include adjustable pulley halves, movable pulley arms, or other mechanisms that enable easy tension adjustment.

6. Idler Pulleys: In certain belt-driven systems, idler pulleys are used in conjunction with the main driving and driven pulleys. Idler pulleys are additional pulleys that do not transmit power but help guide and redirect the belt. They maintain the appropriate tension in the belt, improve belt wrap around the pulleys, and assist in achieving the desired belt path.

7. Surface Finish: The surface finish of a belt pulley is important for reducing friction and wear between the pulley and the belt. Smooth and properly finished surfaces minimize belt slippage and improve power transmission efficiency. The surface finish can be achieved through machining, grinding, or other methods depending on the material and application requirements.

8. Balancing: Balancing is a critical aspect of belt pulley design, especially for high-speed applications. Proper balancing ensures that the pulley rotates smoothly without causing excessive vibrations or premature wear. Unbalanced pulleys can lead to reduced system performance, increased noise, and potential damage to the pulley or other components.

9. Material Selection: The choice of material for a belt pulley depends on factors such as the application requirements, load capacity, operating conditions, and cost considerations. Common materials used for pulleys include cast iron, steel, aluminum, and composite materials. Each material offers specific advantages in terms of strength, durability, corrosion resistance, and weight.

In summary, a belt pulley consists of components such as the pulley body, grooved rim, hub or bore, flanges, tensioning mechanisms, and may include idler pulleys. Design features like surface finish, balancing, and material selection are crucial for optimal performance and longevity of the pulley. Understanding these key components and design features allows for the appropriate selection, installation, and maintenance of belt pulleys in mechanical systems.

China OEM Casting and Machining Belt Pulley for Italy Customer   crankshaft pulley	China OEM Casting and Machining Belt Pulley for Italy Customer   crankshaft pulley
editor by CX